One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length.

نویسندگان

  • Adelaide Miranda
  • Eliana Malheiro
  • Elżbieta Skiba
  • Pedro Quaresma
  • Patrícia A Carvalho
  • Peter Eaton
  • Baltazar de Castro
  • John A Shelnutt
  • Eulália Pereira
چکیده

A photocatalytic approach was used to synthesize triangular nanoplates in aqueous solution. The synthesis is based on the reduction of a gold salt using a tin(iv) porphyrin as photocatalyst, cetyltrimethylammonium bromide (CTAB) as a stabilizing agent, and triethanolamine (TEA) as the final electron donor. The average edge length of the triangular nanoplates can be easily changed in the range 45-250 nm by varying the concentration of photocatalyst, and fine-tuning of the average edge length is achieved by varying the concentration of CTAB. Study of the mechanism of formation of the nanoplates by UV-vis and by transmission electron microscopy (TEM) shows that there is a first stage where formation of 5 nm seeds takes place, further growth is probably by fusion and by direct reduction of gold onto the preformed nanoparticles. The nanoparticles formed during the photocatalytic reduction of the gold precursor show an irregular shape that evolves to regular triangular nanoplates after ripening in solution for 24 h.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness.

We report the synthesis of uniform triangular gold nanoplates by a modified seeded growth method. The concentration of cetyltrimethylammonium bromide (CTAB) in the growth solution and the time interval between multiple steps of growth were important factors which determined the formation of uniform triangular Au nanoplates. In addition, by further isotropic overgrowth, the thickness of triangul...

متن کامل

Polygonal gold nanoplates in a polymer matrix.

Polygonal gold nanoplates are generated in situ in poly(vinyl alcohol) film through thermal treatment, the polymer serving as the reducing agent and stabilizer for the nanoparticle formation and enforcing preferential orientation of the plates. The rare pentagonal as well as the more commonly observed hexagonal, triangular and square/rectangle shapes are obtained by fine-tuning the Au/PVA ratio...

متن کامل

A novel high efficiency composite catalyst: single crystal triangular Au nanoplates supported by functional reduced graphene oxide.

To improve the utilization efficiency of Au catalyst, triangular Au nanoplates on functional reduced graphene oxide were prepared by a facile method. The products with ultra-low trace amounts of Au afforded high catalytic efficiency for the reduction of 4-nitro phenol. The morphology of the products was controlled by tuning the addition of HAuCl4.

متن کامل

Vibration Analysis of Orthotropic Triangular Nanoplates Using Nonlocal Elasticity Theory and Galerkin Method

In this article, classical plate theory (CPT) is reformulated using the nonlocal differential constitutive relations of Eringen to develop an equivalent continuum model for orthotropic triangular nanoplates. The equations of motion are derived and the Galerkin’s approach in conjunction with the area coordinates is used as a basis for the solution. Nonlocal theories are employed to bring out the...

متن کامل

Facile synthesis of concave gold nanoplates in hexagonal liquid crystal made of SDS/water system.

Concave gold nanoplates are obtained in hexagonal liquid crystal (LLC) made of SDS (sodium dodecyl sulfate)/glycine/HAuCl(4) aqueous solution system where glycine plays the key role. All plates are single-crystals, characterized by {111} facets, with concave centers of regular hexagonal or triangular shapes, and with better electrocatalytic activity than gold nanoplates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 2 10  شماره 

صفحات  -

تاریخ انتشار 2010